383 research outputs found

    Ena/VASP is required for endothelial barrier function in vivo

    Get PDF
    Enabled/vasodilator-stimulated phosphoprotein (Ena/VASP) proteins are key actin regulators that localize at regions of dynamic actin remodeling, including cellular protrusions and cell–cell and cell–matrix junctions. Several studies have suggested that Ena/VASP proteins are involved in the formation and function of cellular junctions. Here, we establish the importance of Ena/VASP in endothelial junctions in vivo by analysis of Ena/VASP-deficient animals. In the absence of Ena/VASP, the vasculature exhibits patterning defects and lacks structural integrity, leading to edema, hemorrhaging, and late stage embryonic lethality. In endothelial cells, we find that Ena/VASP activity is required for normal F-actin content, actomyosin contractility, and proper response to shear stress. These findings demonstrate that Ena/VASP is critical for actin cytoskeleton remodeling events involved in the maintenance of functional endothelia

    Plasma inflammatory cytokines and survival of pancreatic cancer patients.

    Get PDF
    OBJECTIVES: Inflammation and inflammatory conditions have been associated with pancreatic cancer risk and progression in a number of clinical, epidemiological, and animal model studies. The goal of the present study is to identify plasma markers of inflammation associated with survival of pancreatic cancer patients, and assess their joint contribution to patient outcome. METHODS: We measured circulating levels of four established markers of inflammation (C-reactive protein (CRP), interleukin-6 (IL-6), soluble tumor necrosis factor receptor type II (sTNF-RII), and macrophage inhibitory cytokine-1 (MIC-1)) in 446 patients enrolled in an ongoing prospective clinic-based study. Hazard ratios (HRs) and 95% confidence intervals (CI) for death were estimated using multivariate Cox proportional hazards models. RESULTS: Overall mortality was significantly increased in patients in the top quartile of CRP (HR = 2.52, 95% CI: 1.82-3.49), IL-6 (HR = 2.78, 95% CI: 2.03-3.81), sTNF-RII (HR = 2.00, 95% CI: 1.46-2.72), and MIC-1 (HR = 2.53, 95% CI: 1.83-3.50), compared to those in the bottom quartile (P-trend CONCLUSION: Individual elevated plasma inflammatory cytokines are associated with significant and dramatic reductions in pancreatic cancer patient survival. Furthermore, we observed an independent combined effect of those cytokines on patient survival, suggesting that multiple inflammatory pathways are likely involved in PDAC progression. Future research efforts to target the inflammatory state using combination strategies in pancreatic cancer patients are warranted

    A Rapid and Economic In-House DNA Purification Method Using Glass Syringe Filters

    Get PDF
    Background Purity, yield, speed and cost are important considerations in plasmid purification, but it is difficult to achieve all of these at the same time. Currently, there are many protocols and kits for DNA purification, however none maximize all four considerations. Methodology/Principal Findings We now describe a fast, efficient and economic in-house protocol for plasmid preparation using glass syringe filters. Plasmid yield and quality as determined by enzyme digestion and transfection efficiency were equivalent to the expensive commercial kits. Importantly, the time required for purification was much less than that required using a commercial kit. Conclusions/Significance This method provides DNA yield and quality similar to that obtained with commercial kits, but is more rapid and less costly.This research was supported by Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewe

    Intensivist supervision of resident-placed central venous catheters decreases the incidence of catheter-related blood stream infections

    Get PDF
    Catheter-related blood stream infections (CRBSI) cause significant morbidity and mortality. A retrospective study of a performance improvement project in our teaching hospital's surgical intensive care unit (SICU) showed that intensivist supervision was important in reinforcing maximal sterile barriers (MSB) use during the placement of a central venous catheter (CVC) in the prevention of CRBSI. A historical control period, 1 January 2001–31 December 2003, was established for comparison. From 1 January 2003–31 December 2007, MSB use for central venous line placement was mandated for all operators. However, in 2003 there was no intensivist supervision of CVC placements in the SICU. The use of MSB alone did not cause a significant change in the CRBSI rate in the first year of the project, but close supervision by an intensivist in years 2004–2007, in conjunction with MSB use, demonstrated a significant drop in the CRBSI rate when compared to the years before intensivist supervision (2001–2003), p < .0001. A time series analysis comparing monthly rates of CRBSI (2001–2007) also revealed a significant downward trend, p = .028. Additionally, in the first year of the mandated MSB use (2003), 85 independently observed resident-placed CVCs demonstrated that breaks in sterile technique (34/85), as compared those placements that had no breaks in technique (51/85), had more CRBSI, 6/34 (17.6%) vs. 1/51 (1.9%), p < .01. Interventions to reduce CRBSI in our SICU needed emphasis on adequate supervision of trainees in CVC placement, in addition to use of MSB, to effect lower CRBSI rates

    Core components for effective infection prevention and control programmes: new WHO evidence-based recommendations

    Get PDF
    Abstract Health care-associated infections (HAI) are a major public health problem with a significant impact on morbidity, mortality and quality of life. They represent also an important economic burden to health systems worldwide. However, a large proportion of HAI are preventable through effective infection prevention and control (IPC) measures. Improvements in IPC at the national and facility level are critical for the successful containment of antimicrobial resistance and the prevention of HAI, including outbreaks of highly transmissible diseases through high quality care within the context of universal health coverage. Given the limited availability of IPC evidence-based guidance and standards, the World Health Organization (WHO) decided to prioritize the development of global recommendations on the core components of effective IPC programmes both at the national and acute health care facility level, based on systematic literature reviews and expert consensus. The aim of the guideline development process was to identify the evidence and evaluate its quality, consider patient values and preferences, resource implications, and the feasibility and acceptability of the recommendations. As a result, 11 recommendations and three good practice statements are presented here, including a summary of the supporting evidence, and form the substance of a new WHO IPC guideline

    Mitochondrial Networking Protects β-Cells From Nutrient-Induced Apoptosis

    Get PDF
    OBJECTIVE: Previous studies have reported that β-cell mitochondria exist as discrete organelles that exhibit heterogeneous bioenergetic capacity. To date, networking activity, and its role in mediating β-cell mitochondrial morphology and function, remains unclear. In this article, we investigate β-cell mitochondrial fusion and fission in detail and report alterations in response to various combinations of nutrients. RESEARCH DESIGN AND METHODS: Using matrix-targeted photoactivatable green fluorescent protein, mitochondria were tagged and tracked in β-cells within intact islets, as isolated cells and as cell lines, revealing frequent fusion and fission events. Manipulations of key mitochondrial dynamics proteins OPA1, DRP1, and Fis1 were tested for their role in β-cell mitochondrial morphology. The combined effects of free fatty acid and glucose on β-cell survival, function, and mitochondrial morphology were explored with relation to alterations in fusion and fission capacity. RESULTS: β-Cell mitochondria are constantly involved in fusion and fission activity that underlies the overall morphology of the organelle. We find that networking activity among mitochondria is capable of distributing a localized green fluorescent protein signal throughout an isolated β-cell, a β-cell within an islet, and an INS1 cell. Under noxious conditions, we find that β-cell mitochondria become fragmented and lose their ability to undergo fusion. Interestingly, manipulations that shift the dynamic balance to favor fusion are able to prevent mitochondrial fragmentation, maintain mitochondrial dynamics, and prevent apoptosis. CONCLUSIONS: These data suggest that alterations in mitochondrial fusion and fission play a critical role in nutrient-induced β-cell apoptosis and may be involved in the pathophysiology of type 2 diabetes.National Institutes of Health (R01HL071629-03, R01DK074778, 5T32DK007201

    Clinical review: Allocating ventilators during large-scale disasters – problems, planning, and process

    Get PDF
    Catastrophic disasters, particularly a pandemic of influenza, may force difficult allocation decisions when demand for mechanical ventilation greatly exceeds available resources. These situations demand integrated incident management responses on the part of the health care facility and community, including resource management, provider liability protection, community education and information, and health care facility decision-making processes designed to allocate resources as justly as possible. If inadequate resources are available despite optimal incident management, a process that is evidence-based and as objective as possible should be used to allocate ventilators. The process and decision tools should be codified pre-event by the local and regional healthcare entities, public health agencies, and the community. A proposed decision tool uses predictive scoring systems, disease-specific prognostic factors, response to current mechanical ventilation, duration of current and expected therapies, and underlying disease states to guide decisions about which patients will receive mechanical ventilation. Although research in the specifics of the decision tools remains nascent, critical care physicians are urged to work with their health care facilities, public health agencies, and communities to ensure that a just and clinically sound systematic approach to these situations is in place prior to their occurrence

    MiR-223 Suppresses Cell Proliferation by Targeting IGF-1R

    Get PDF
    To study the roles of microRNA-223 (miR-223) in regulation of cell growth, we established a miR-223 over-expression model in HeLa cells infected with miR-223 by Lentivirus pLL3.7 system. We observed in this model that miR-223 significantly suppressed the proliferation, growth rate, colony formation of HeLa cells in vitro, and in vivo tumorigenicity or tumor formation in nude mice. To investigate the mechanisms involved, we scanned and examined the potential and putative target molecules of miR-223 by informatics, quantitative PCR and Western blot, and found that insulin-like growth factor-1 receptor (IGF-1R) was the functional target of miR-223 inhibition of cell proliferation. Targeting IGF-1R by miR-223 was not only seen in HeLa cells, but also in leukemia and hepatoma cells. The downstream pathway, Akt/mTOR/p70S6K, to which the signal was mediated by IGF-1R, was inhibited as well. The relative luciferase activity of the reporter containing wild-type 3′UTR(3′untranslated region) of IGF-1R was significantly suppressed, but the mutant not. Silence of IGF-1R expression by vector-based short hairpin RNA resulted in the similar inhibition with miR-223. Contrarily, rescued IGF-1R expression in the cells that over-expressed miR-223, reversed the inhibition caused by miR-223 via introducing IGF-1R cDNA that didn't contain the 3′UTR. Meanwhile, we also noted that miR-223 targeted Rasa1, but the downstream molecules mediated by Rasa1 was neither targeted nor regulated. Therefore we believed that IGF-1R was the functional target for miR-223 suppression of cell proliferation and its downstream PI3K/Akt/mTOR/p70S6K pathway suppressed by miR-223 was by targeting IGF-1R

    TrpC3 Regulates Hypertrophy-Associated Gene Expression without Affecting Myocyte Beating or Cell Size

    Get PDF
    Pathological cardiac hypertrophy is associated with an increased risk of heart failure and cardiovascular mortality. Calcium (Ca2+) -regulated gene expression is essential for the induction of hypertrophy, but it is not known how myocytes distinguish between the Ca2+ signals that regulate contraction and those that lead to cardiac hypertrophy. We used in vitro neonatal rat ventricular myocytes to perform an RNA interference (RNAi) screen for ion channels that mediate Ca2+-dependent gene expression in response to hypertrophic stimuli. We identified several ion channels that are linked to hypertrophic gene expression, including transient receptor potential C3 (TrpC3). RNAi-mediated knockdown of TrpC3 decreases expression of hypertrophy-associated genes such as the A- and B-type natriuretic peptides (ANP and BNP) in response to numerous hypertrophic stimuli, while TrpC3 overexpression increases BNP expression. Furthermore, stimuli that induce hypertrophy dramatically increase TrpC3 mRNA levels. Importantly, whereas TrpC3-knockdown strongly reduces gene expression associated with hypertrophy, it has a negligible effect on cell size and on myocyte beating. These results suggest that Ca2+ influx through TrpC3 channels increases transcription of genes associated with hypertrophy but does not regulate the signaling pathways that control cell size or contraction. Thus TrpC3 may represent an important therapeutic target for the treatment of cardiac hypertrophy and heart failure

    Combined antiviral activity of interferon-α and RNA interference directed against hepatitis C without affecting vector delivery and gene silencing

    Get PDF
    The current standard interferon-alpha (IFN-α)-based therapy for chronic hepatitis C virus (HCV) infection is only effective in approximately half of the patients, prompting the need for alternative treatments. RNA interference (RNAi) represents novel approach to combat HCV by sequence-specific targeting of viral or host factors involved in infection. Monotherapy of RNAi, however, may lead to therapeutic resistance by mutational escape of the virus. Here, we proposed that combining lentiviral vector-mediated RNAi and IFN-α could be more effective and avoid therapeutic resistance. In this study, we found that IFN-α treatment did not interfere with RNAi-mediated gene silencing. RNAi and IFN-α act independently on HCV replication showing combined antiviral activity when used simultaneously or sequentially. Transduction of mouse hepatocytes in vivo and in vitro was not effected by IFN-α treatment. In conclusion, RNAi and IFN-α can be effectively combined without cross-interference and may represent a promising combinational strategy for the treatment of hepatitis C
    corecore